死在火星上 对火星轨道变化问题的最后解释

小说:死在火星上 作者:天瑞说符 更新时间:2025-01-12 20:32:22 源网站:无限小说网
  作者君在作品相关中其实已经解释过这个问题。

  不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

  那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。

  以下是文章内容:

  long-termintegrationsandstabilityoaryorbitsinoursrsystem

  abstract

  wepresenttheresultsofverylong-termnumericalintegrationsoaryorbitalmotionsover109-yrtime-spansincludingallnins.aquickinspectionofournumericaldatashowsthattharymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscitionsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestriaarymotion,especiallythatofmercury.thebehaviouroftheentricityofmercuryinourintegrationsisqualitativelysimrtotheresultsfromjacqueskar'ssecrperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecrincreasesofentricityorinclinationinanyorbitalelementsofths,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfivsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

  1introduction

  1.1definitionoftheproblem

  thequestionofthestabilityofoursrsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasyedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursrsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrtiontotheproblemoarymotioninthesrsystem.actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursrsystem.

  amongmanydefinitionsofstability,hereweadoptthehilldefinition(dman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbingunstablewhenacloseencounterurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherill&boss1996;ito&tanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthrgerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatouarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursrsystem,about±5gyr.incidentally,thisdefinitionmayberecedbyoneinwhichanurrenceofanyorbitalcrossingbetweeneitherofapairostakesce.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounteriaryandprotarysystems(yoshinaga,kokubo&makino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosystem.

  1.2previousstudiesandaimsofthisresearch

  inadditiontothevaguenessoftheconceptofstability,thsinoursrsystemshowacharactertypicalofdynamicalchaos(sussman&wisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceovepping(murray&holman1999;lecar,franklin&holman2001).however,itwouldrequireintegratingoveranensembleoarysystemsincludingallninsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionoaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

  fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfivs(sussman&wisdom1988;kinoshita&nakai1996).thisisbecausetheorbitalperiodsoftheoutesaresomuchlongerthanthoseoftheinnerfousthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncan&lissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesrmasslossonthestabilityoaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovias.theinitialorbitalelementsandmassesosarethesameasthoseofoursrsysteminduncan&lissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesrmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleoaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejoviasremainstableover1010yr,orperhapslonger.duncan&lissaueralsoperformedfoursimrexperimentsontheorbitalmotionofseves(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevesarenotyeprehensive,butitseemsthattheterrestriasalsoremainstableduringtheintegrationperiod,maintainingalmostregroscitions.

  ontheotherhand,inhisuratesemi-analyticalsecrperturbationtheoryskar1988)skarfindsthargeandirregrvariationscanappearintheentricitiesandinclinationsoftheterrestrias,especiallyofmercuryandmarsonatime-scaleofseveral109yrskar1996).theresultsoskar'ssecrperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

  inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallninaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalpsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsrsystearymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltharyorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thougarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsrsystearymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(ess),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdunayelementsandangrmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

  insection2webrieflyexinourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsrsystearymotionisapparentbothiarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationoaryorbitsusingalow-passfilterandincludesadiscussionofangrmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfivsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftharymotionanditspossiblecause.

  2descriptionofthenumericalintegrations

  (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

  2.3numericalmethod

  weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdom&holman1991;kinoshita,yoshida&nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(saha&tremaine1992,1994).

  thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenins(n±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermos(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallninsinsussman&wisdom(1988,7.2d)andsaha&tremaine(1994,225/32d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheumtionofround-offerrorinthputationprocesses.inrtiontothis,wisdom&holman(1991)performednumericalintegrationsoftheouterfivaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofjupiter.theirresultseemstobeurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwparetheseintegrationssimplyintermsofstepsizes.

  intheintegrationoftheouterfivs(f±),wefixedthestepsizeat400d.

  weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

  theintervalofthedataoutputis200000d(~547yr)forthecalctionsofallnins(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfivs(f±).

  althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehapletedallthecalctions.seesection4.1formoredetail.

  2.4errorestimation

  2.4.1rtiveerrorsintotalenergyandangrmomentum

  ordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangrmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrtiveerrorsoftotalenergy(~10?9)andoftotngrmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrtiveerrorintotalenergybyaboutoneorderofmagnitudeormore.

  rtivenumericalerrorofthetotngrmomentumδa/a0andthetotalenergyδe/e0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotngrmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.

  notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericlgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecrnumericalerrorinthetotngrmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

  2.4.2erroriarylongitudes

  sincethesymplecticmapspreservetotalenergyandtotngrmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheuracyofnumericalintegrations,especiallyasameasureofthepositionalerroros,i.e.theerroriarylongitudes.toestimatethenumericalerrorintharylongitudes,weperformedthefollowingprocedures.wparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheruracythanthemainintegrations.forthispurpose,weperformedamuchmoreurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionoaryorbitalevolution.next,wparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextraptedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.simrly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshita&nakai(1996)wherethedifferenceisestimatedas~60°.

  3numericalresults–i.nceattherawdata

  inthissectionwebrieflyreviewthelong-termstabilityoaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionosindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairostookce.

  3.1generaldescriptionofthestabilityoaryorbits

  first,webrieflylookatthegeneralcharacterofthelong-termstabilityoaryorbits.ourinterestherefocusesparticrlyontheinnerfourterrestriasforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfivs.aswecanseeclearlyfromthenarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestriasdifferlittlebetweentheinitindfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsofthsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregrvariationsoaryorbitalmotionremainnearlythesameastheyareatpresent.

  verticalviewofthefourinnearyorbits(fromthez-axisdirection)attheinitindfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-neissettotheinvariantneofsrsystemtotngrmomentum.(a)theinitialpartofn 1(t=0to0.0547x109yr).(b)thefinalpartofn 1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrias(takenfromde245).

  thevariationofentricitiesandorbitalinclinationsfortheinnerfousintheinitindfinalpartoftheintegrationn 1isshowninfig.4.asexpected,thecharacterofthevariationoaryorbitalelementsdoesnotdiffersignificantlybetweentheinitindfinalpartofeachintegration,atleastforvenus,earthandmars.theelementsofmercury,especiallyitsentricity,seemtochangetoasignificantextent.thisispartlybecausetheorbitaltime-scaleofthistheshortestofallths,whichleadstoamorerapidorbitalevolutionthanothes;theinnermosmaybenearesttoinstability.thisresultappearstobeinsomeagreementwitskar's(1994,1996)expectationsthargeandirregrvariationsappearintheentricitiesandinclinationsofmercuryonatime-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofmercurymaynotfatallyaffecttheglobalstabilityofthewholarysystemowingtothesmallmassofmercury.wewillmentionbrieflythelong-termorbitalevolutionofmercurterinsection4usinglow-passfilteredorbitalelements.

  theorbitalmotionoftheouterfivsseemsrigorouslystableandquiteregroverthistime-span(seealsosection5).

  3.2time–frequencymaps

  althoughtharymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaotatureoarydynamicscanchangetheoscitoryperiodandamplitudeoaryorbitalmotiongraduallyoversuchlongtime-spans.evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particrlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsrinstionvariation(cf.berger1988).

  togiveanoverviewofthelong-termchangeinperiodicityiaryorbitalmotion,weperformedmanyfastfouriertransformations(ffts)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisoskar's(1990,1993)frequencyanalysis.

  dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength.thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplythefft.

  eachfragmentofthedatahasrgeoveppingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti t,thenextdatasegmentrangesfromti δt≤ti δt t,whereδt?t.wecontinuethisdivisionuntilwereachacertainnumbernbywhichtn treachesthetotalintegrationlength.

  weapplyanffttoeachofthedatafragments,andobtainnfrequencydiagrams.

  ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanberecedbyagrey-scale(orcolour)chart.

  weperformtherecement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.thehorizontxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).theverticxisrepresentstheperiod(orfrequency)oftheoscitionoforbitalelements.

  wehaveadoptedanfftbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedposedintofrequencponentsisterriblyhuge(severaltensofgbytes).

  atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasfig.5,whichshowsthevariationofperiodicityintheentricityandinclinationofearthinn 2integration.infig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefromthismapthattheperiodicityoftheentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen 2integration.thisnearlyregrtrendisqualitativelythesameinotherintegrationsandforothes,althoughtypicalfrequenciesdiffebandelementbyelement.

  4.2long-termexchangeoforbitalenergyandangrmomentum

  wecalcteverylong-periodicvariationandexchangeoaryorbitalenergyandangrmomentumusingfiltereddunayelementsl,g,h.gandhareequivalenttotharyorbitngrmomentumanditsverticaponentperunitmass.lisrtedtotharyorbitalenergyeperunitmassase=?μ2/2l2.ifthesystemipletelylinear,theorbitalenergyandtheangrmomentumineachfrequencybinmustbeconstant.non-linearityintharysystemcancauseanexchangeofenergyandangrmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscitionshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.

  infig.7,thetotalorbitalenergyandangrmomentumofthefourinnesandallninsareshownforintegrationn 2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totngrmomentum(g-g0),andtheverticaponent(h-h0)oftheinnerfouscalctedfromthelow-passfiltereddunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnins.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovias.

  4.4long-termcouplingofseveralneighbourinpairs

  letusseesomeindividualvariationsoaryorbitalenergyandangrmomentumexpressedbythelow-passfiltereddunayelements.figs10and11showlong-termevolutionoftheorbitalenergyofeacandtheangrmomentuminn 1andn?2integrations.wenoticethatsomsformapparentpairsintermsoforbitalenergyandangrmomentumexchange.inparticr,venusandearthmakeatypicalpair.inthefigures,theyshownegativecorrtionsinexchangeofenergyandpositivecorrtionsinexchangeofangrmomentum.thenegativecorrtioninexchangeoforbitalenergymeansthatthetwsformacloseddynamicalsystemintermsoftheorbitalenergy.thepositivecorrtioninexchangeofangrmomentummeansthatthetwsaresimultaneouslyundercertainlong-termperturbations.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatmarsshowsapositivecorrtionintheangrmomentumvariationtothevenus–earthsystemrcuryexhibitscertainnegativecorrtionsintheangrmomentumversusthevenus–earthsystem,whichseemstobeareactioncausedbytheconservationofangrmomentumintheterrestriaarysubsystem.

  itisnotclearatthemomentwhythevenus–earthpairexhibitsanegativecorrtioninenergyexchangeandapositivecorrtioninangrmomentumexchange.wemaypossiblyexinthisthroughobservingthegeneralfactthattherearenosecrtermsiarysemimajoraxesuptosecond-orderperturbationtheories(cf.brouwer&clemence1961;baletti&puco1998).thismeansthattharyorbitalenergy(whichisdirectlyrtedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbinsthanistheangrmomentumexchange(whichrtestoe).hence,theentricitiesofvenusandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsinapositivecorrtionintheangrmomentumexchange.ontheotherhand,thesemimajoraxesofvenusandeartharelesslikelytobedisturbedbythejovias.thustheenergyexchangemaybelimitedonlywithinthevenus–earthpair,whichresultsinanegativecorrtionintheexchangeoforbitalenergyinthepair.

  asfortheouterjoviaarysubsystem,jupiter–saturnanduranus–neptuneseemtomakedynamicalpairs.however,thestrengthoftheircouplingisnotasstronparedwiththatofthevenus–earthpair.

  5±5x1010-yrintegrationsofoutearyorbits

  sincethejoviaarymassesaremucrgerthantheterrestriaarymasses,wetreatthejoviaarysystemasanindependenarysystemintermsofthestudyofitsdynamicalstability.hence,weaddedacoupleoftrialintegrationsthatspan±5x1010yr,includingonlytheouterfivs(thefourjoviaspluspluto).theresultsexhibittherigorousstabilityoftheoutearysystemoverthislongtime-span.orbitalconfigurations(fig.12),andvariationofentricitiesandinclinations(fig.13)showthisverylong-termstabilityoftheouterfivsinboththetimeandthefrequencydomains.althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscitionofplutoandtheotheroutesisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage.

  inthesetwointegrations,thertivenumericalerrorinthetotalenergywas~10?6andthatofthetotngrmomentumwas~10?10.

  5.1resonancesintheneptune–plutosystem

  kinoshita&nakai(1996)integratedtheouterfivaryorbitsover±5.5x109yr.theyfoundthatfourmajorresonancesbetweenneptuneandplutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofpluto.themajorfourresonancesfoundinpreviousresearchareasfollows.inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion.subscriptspandndenoteplutoandneptune.

  meanmotionresonancebetweenneptuneandpluto(3:2).thecriticrgumentθ1=3λp?2λn??plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2x104yr.

  theargumentofperihelionofplutowp=θ2=?p?Ωplibratesaround90°withaperiodofabout3.8x106yr.thedominantperiodicvariationsoftheentricityandinclinationofplutoaresynchronizedwiththelibrationofitsargumentofperihelion.thisisanticipatedinthesecrperturbationtheoryconstructedbykozai(1962).

  thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp?Ωn,circtesandtheperiodofthiscirctionisequaltotheperiodofθ2libration.whenθ3beszero,i.e.thelongitudesofascendingnodesofneptuneandplutoovep,theinclinationofplutobesmaximum,theentricitybesminimumandtheargumentofperihelionbes90°.whenθ3bes180°,theinclinationofplutobesminimum,theentricitybesmaximumandtheargumentofperihelionbes90°again.williams&benson(1971)anticipatedthistypeofresonanceterconfirmedbymni,nobili&carpino(1989).

  anargumentθ4=?p??n 3(Ωp?Ωn)libratesaround180°withalongperiod,~5.7x108yr.

  inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticrgumentsθ1,θ2,θ3remainsimrduringthewholeintegrationperiod(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticrgumentθ4alternateslibrationandcirctionovera1010-yrtime-scale(fig.17).thisisaninterestingfactthatkinoshita&nakai's(1995,1996)shorterintegrationswerenotabletodisclose.

  6discussion

  whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftharysystem?wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.first,thereseemtobenosignificantlower-orderresonances(meanmotionandsecr)betweenanypairamongthenins.jupiterandsaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.higher-orderresonancesmaycausethechaotatureoftharydynamicalmotion,buttheyarenotsostrongastodestroythestablarymotionwithinthelifetimeoftherealsrsystem.thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofouarysystem,isthedifferenceindynamicaldistancebetweenterrestrindjoviaarysubsystems(ito&tanikawa1999,2001).whenwemeasuraryseparationsbythemutualhillradii(r_),separationsamongterrestriasaregreaterthan26rh,whereasthoseamongjoviasarelessthan14rh.thisdifferenceisdirectlyrtedtothedifferencebetweendynamicalfeaturesofterrestrindjovias.terrestriashavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.theyarestronglyperturbedbyjoviasthathavrgermasses,longerorbitalperiodsandnarrowerdynamicalseparation.joviasarenotperturbedbyanyothermassivebodies.

  thepresentterrestriaarysystemisstillbeingdisturbedbythemassivejovias.however,thewideseparationandmutualinteractionamongtheterrestriasrendersthedisturbanceineffective;thedegreeofdisturbancebyjoviasiso(ej)(orderofmagnitudeoftheentricityofjupiter),sincethedisturbancecausedbyjoviasisaforcedoscitionhavinganamplitudeofo(ej).heighteningofentricity,forexampleo(ej)~0.05,isfarfromsufficienttoprovokeinstabilityintheterrestriashavingsuchawideseparationas26rh.thusweassumethatthepresentwidedynamicalseparationamongterrestrias(>26rh)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftharysystemovera109-yrtime-span.ourdetailedanalysisofthertionshipbetweendynamicaldistancebetweesandtheinstabilitytime-scaleofsrsystearymotionisnowon-going.

  althoughournumericalintegrationsspanthelifetimeofthesrsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofouarydynamics.

  ——以上文段引自ito,t.&tanikawa,k.long-termintegrationsandstabilityoaryorbitsinoursrsystem.mon.not.r.astron.soc.336,483–500(2002)

  这只是作者君参考的一篇文章,关于太阳系的稳定性。

  还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
为更好的阅读体验,本站章节内容基于百度转码进行转码展示,如有问题请您到源站阅读, 转码声明
无限小说网邀请您进入最专业的小说搜索网站阅读死在火星上,死在火星上最新章节,死在火星上 无限小说网!
可以使用回车、←→快捷键阅读
本站根据您的指令搜索各大小说站得到的链接列表,与本站立场无关
如果版权人认为在本站放置您的作品有损您的利益,请发邮件至,本站确认后将会立即删除。
Copyright©2018 无限小说网